If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-70X+500=0
a = 1; b = -70; c = +500;
Δ = b2-4ac
Δ = -702-4·1·500
Δ = 2900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2900}=\sqrt{100*29}=\sqrt{100}*\sqrt{29}=10\sqrt{29}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-10\sqrt{29}}{2*1}=\frac{70-10\sqrt{29}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+10\sqrt{29}}{2*1}=\frac{70+10\sqrt{29}}{2} $
| (595+x)/5=70 | | 4.22x+1-9.2x+1=2 | | x+7x/100+276=10x/100 | | x^2+4x/x-4=153 | | 2x÷5=7÷2 | | x3=|4-x2| | | 4(3w+2)+7=21 | | 3x+48=x^2+7x-3 | | X-0.80x=70 | | 6x/4+10=18 | | 8x^2+5x+2=3 | | 2(x+14)=5x−11 | | 0.3x=1.6 | | 13^(11p-3)=8^p | | I2x+5I=4 | | 2x–3=5x+5 | | -5a+3=7a-5 | | -14=3-c+(9*5c) | | 1/3(2p-1)+2-(5/9)=0 | | 3/4x+16=32 | | 2(3x+6)=3(x+9) | | 76/x*3+22=250 | | 32=-v+270 | | 247-y=169 | | 4x+7÷3+2x=9 | | 218=-x+117 | | 8x+5/2=9 | | 3(x-4)-5(2x-1)=21 | | 3(h-4)=6(2h+1) | | 3(3j-4)=5 | | 9+12=6y+48 | | 6(x-2)+12(3-x)=6 |